Automated abdominal adipose tissue segmentation into SAT, VAT via Dixon MRI in different children

Automated abdominal adipose tissue segmentation into SAT, VAT via Dixon MRI in different children. In each image, top and bottom images represent fat-only images without (top) and with (bottom) segmentation. Blue area denotes SAT, and green area denotes VAT. Left, center, and right represent three children with varying body sizes and varying amounts of abdominal SAT and VAT. (Left) 13-year-old underweight girl. Dice similarity coefficient and volumetric similarity are for SAT, 0.94 and 0.99, and for VAT are 0.85 and 0.92. (Center) 13-year-old underweight boy. Dice similarity coefficient and volumetric similarity are for SAT, 0.91 and 0.96, and for VAT, 0.82 and 0.90. (Right) 13-year-old normal-weight girl. Dice similarity coefficient and volumetric similarity are for SAT, 0.97 and 0.98, and for VAT are 0.86 and 0.95. 


August 18, 2023 — According to an accepted manuscript published in the American Journal of Roentgenology (AJR), an automated model could enable large-scale studies in adolescent populations that investigate abdominal fat distribution on MRI, as well as associations of fat distribution with clinical outcomes. 

Noting that a global increase in childhood obesity has created the need to accurately quantify body fat distribution, “we trained and evaluated the 2D-CDFNet model on Dixon MRI in adolescents,” wrote co-first author Tong Wu, MD, from the department of radiology and nuclear medicine at Erasmus MC University Medical Center in The Netherlands. 

Watch Dr. Wu discuss training and evaluating this 2D-CDFNet model on Dixon MRI in adolescents. 

Embedded within the Generation R Study—a prospective population-based cohort study in Rotterdam—Wu et al.’s AJR manuscript included 2,989 children (mean age, 13.5 years; 1,432 boys, 1,557 girls) who underwent investigational whole-body Dixon MRI upon age 13. A competitive dense fully convolutional network (2D-CDFNet) was trained from scratch to segment abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from Dixon images. The model underwent training, validation, and testing in 62, 8, and 15 children, respectively, selected via stratified random sampling with manual segmentation for reference. The AJR authors then assessed the performance of their segmentation using Dice similarity coefficient and volumetric similarity. Two independent observers visually evaluated automated segmentations in 504 children, selected by stratified random sampling, as well as scoring undersegmentation and oversegmentation (scale of 0-3). 

Ultimately, this model for automated SAT and VAT segmentation from Dixon MRI showed strong quantitative performance (Dice coefficients and volumetric similarity relative to manual segmentations: range, 0.85-0.98) and qualitative performance (best possible visual score of 3/3 by two independent observers in 95-99% of assessments). 

For more information: www.arrs.org


Related Content

News | Endoscopes

Oct. 22, 2025 — Fujifilm Healthcare Americas Corp. has launched its advanced endoscopy platform, the ELUXEO 8000 ...

Time October 23, 2025
arrow
News | X-Ray

Oct. 22, 2025 — Imaging technology company Adaptix has begun live imaging trials as part of a research program at the ...

Time October 22, 2025
arrow
News | Contrast Media

Oct. 21, 2025 — Subtle Medical, Inc., a provider of AI-powered medical imaging solutions, has announced positive ...

Time October 21, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | Artificial Intelligence

Oct. 20, 2025 — Viz.ai has launched of Viz Assist, a suite of autonomous AI agents that significantly enhance how care ...

Time October 20, 2025
arrow
News | Point-of-Care Ultrasound (POCUS)

Oct. 15, 2025 — GE HealthCare has announced the latest advancement in its Venue family of point-of-care ultrasound ...

Time October 16, 2025
arrow
News | Magnetic Resonance Imaging (MRI)

September 24, 2025—According to the American Journal of Roentgenology (AJR), MRI can reliably identify lateral meniscal ...

Time October 03, 2025
arrow
News | Radiopharmaceuticals and Tracers

Oct. 01, 2025 – Nuclidium AG, a clinical-stage radiopharmaceutical company developing a proprietary copper-based ...

Time October 02, 2025
arrow
News | Radiology Business | Harvey L. Neiman Health Policy Institute

Sept. 30, 2025 — A new study from the Harvey L. Neiman Health Policy Institute found that attrition (i.e., exit) from ...

Time October 02, 2025
arrow
News | Computed Tomography (CT)

Sept. 26, 2025 — At the American Society for Radiation Oncology (ASTRO) 2025 annual meeting in San Francisco, Calif ...

Time September 29, 2025
arrow
Subscribe Now