News | Magnetic Resonance Imaging (MRI) | February 11, 2022

A newly designed wearable magnetic metamaterial could help make MRI scans crisper, faster, and cheaper

Boston University College of Engineering professor Xin Zhang and her research collaborators have developed a new, 3-D metamaterial that has the potential to improve MRI imaging of the human brain. The spherical structure can be worn like a helmet, and change size to create images more quickly and at a higher quality – ultimately improving MRI functionality while reducing costs. Image courtesy of Boston University’s Photonics Center, Ke Wu, a PhD student in BU’s department of mechanical engineering and Xin Z

Boston University College of Engineering professor Xin Zhang and her research collaborators have developed a new, 3-D metamaterial that has the potential to improve MRI imaging of the human brain. The spherical structure can be worn like a helmet, and change size to create images more quickly and at a higher quality – ultimately improving MRI functionality while reducing costs. Image courtesy of Boston University’s Photonics Center, Ke Wu, a PhD student in BU’s department of mechanical engineering and Xin Zhang, a College of Engineering professor of mechanical engineering


February 11, 2022 — It may look like a bizarre bike helmet, or a piece of equipment found in Doc Brown’s lab in Back to the Future, yet this gadget made of plastic and copper wire is a technological breakthrough with the potential to revolutionize medical imaging. Despite its playful look, the device is actually a metamaterial, packing in a ton of physics, engineering and mathematical know-how. 

It was developed by Xin Zhang, a College of Engineering professor of mechanical engineering, and her team of scientists at BU’s Photonics Center. They’re experts in metamaterials, a type of engineered structure created from small unit cells that might be unspectacular alone, but when grouped together in a precise way, get new superpowers not found in nature. Metamaterials, for instance, can bend, absorb, or manipulate waves—such as electromagnetic waves, sound waves, or radio waves. Each unit cell, also called a resonator, is typically arranged in a repeating pattern in rows and columns; they can be designed in different sizes and shapes, and placed at different orientations, depending on which waves they’re designed to influence. 

Metamaterials can have many novel functions. Zhang, who is also a professor of electrical and computer engineering, biomedical engineering, and materials science and engineering, has designed an acoustic metamaterial that blocks sound without stopping airflow (imagine quieter jet engines and air conditioners) and a magnetic metamaterial that can improve the quality of magnetic resonance imaging (MRI) machines used for medical diagnosis. 

Now, Zhang and her team have taken their work a step further with the wearable metamaterial. The dome-shaped device, which fits over a person’s head and can be worn during a brain scan, boosts MRI performance, creating crisper images that can be captured at twice the normal speed. 

metamateral brain MRI

The helmet is fashioned from a series of magnetic metamaterial resonators, which are made from 3D-printed plastic tubes wrapped in copper wiring, grouped on an array, and precisely arranged to channel the magnetic field of the MRI machine. Placing the magnetic metamaterial—in helmet form or as the originally designed flat array—near the part of the body to be scanned, says Zhang, could make MRIs less costly and more time efficient for doctors, radiologists, and patients—all while improving image quality.

Eventually, the magnetic metamaterial has the potential to be used in conjunction with cheaper low-field MRI machines to make the technology more widely available, particularly in the developing world. 

For more information: www.bu.edu

Watch the video


Related Content

News | Endoscopes

Oct. 22, 2025 — Fujifilm Healthcare Americas Corp. has launched its advanced endoscopy platform, the ELUXEO 8000 ...

Time October 23, 2025
arrow
News | X-Ray

Oct. 22, 2025 — Imaging technology company Adaptix has begun live imaging trials as part of a research program at the ...

Time October 22, 2025
arrow
News | Contrast Media

Oct. 21, 2025 — Subtle Medical, Inc., a provider of AI-powered medical imaging solutions, has announced positive ...

Time October 21, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | Artificial Intelligence

Oct. 20, 2025 — Viz.ai has launched of Viz Assist, a suite of autonomous AI agents that significantly enhance how care ...

Time October 20, 2025
arrow
News | Point-of-Care Ultrasound (POCUS)

Oct. 15, 2025 — GE HealthCare has announced the latest advancement in its Venue family of point-of-care ultrasound ...

Time October 16, 2025
arrow
News | Magnetic Resonance Imaging (MRI)

September 24, 2025—According to the American Journal of Roentgenology (AJR), MRI can reliably identify lateral meniscal ...

Time October 03, 2025
arrow
News | Radiopharmaceuticals and Tracers

Oct. 01, 2025 – Nuclidium AG, a clinical-stage radiopharmaceutical company developing a proprietary copper-based ...

Time October 02, 2025
arrow
News | Radiology Business | Harvey L. Neiman Health Policy Institute

Sept. 30, 2025 — A new study from the Harvey L. Neiman Health Policy Institute found that attrition (i.e., exit) from ...

Time October 02, 2025
arrow
News | Computed Tomography (CT)

Sept. 26, 2025 — At the American Society for Radiation Oncology (ASTRO) 2025 annual meeting in San Francisco, Calif ...

Time September 29, 2025
arrow
Subscribe Now