News | Cardiovascular Ultrasound | June 27, 2018

Study results show artificial intelligence-based software has less variability in evaluating left ventricular EF than the reported average variability of cardiologists

EchoMD AutoEF Software Improves Variability in Ejection Fraction Estimation

June 27, 2018 – A recent study conducted with the Minneapolis Heart Institute found that Bay Labs’ EchoMD AutoEF deep learning software has less variability in evaluating left ventricular ejection fraction (EF) than the average variability of cardiologists reported in literature. Results of the study were presented at the 2018 American Society of Echocardiography (ASE) Annual Scientific Sessions, June 22-26 in Nashville.

Literature shows that the average variability of cardiologist readers using the Simpson’s biplane method in estimating EF is 9.2 percent. The observed variability of EchoMD AutoEF was superior at 8.29 percent (p = 0.002). The study also demonstrated that EchoMD AutoEF is an accurate and fully automated method of calculating EF from complete echocardiographic patient studies without user intervention. In addition to normal patients, it performed well on obese patients, and on patients with a range of normal and abnormal EF.

“Historically there have been challenges with variability and reproducibility in reporting of the ejection fraction, especially when the EF is not normal; our study showed that the EchoMD AutoEF algorithms can aid interpretation enormously and have less variability than cardiologists reported in literature,” said Richard Bae, M.D., FACC, director of the Echocardiography Laboratory at the Minneapolis Heart Institute and co-author of the study. “By supporting fast, efficient and accurate AI [artificial intelligence]-assisted echocardiogram analysis, the algorithms can allow physicians to focus on putting results into context for the patient — guiding prognosis and course of management.”

The study included 405 echocardiographic patient studies from Minneapolis Heart Institute representing a wide range of body mass index, EF values and of ultrasound systems. For each patient study, the Bay Labs’ software automatically selected optimal apical four-chamber and apical two-chamber digital video clips and used them to perform an EF calculation. These calculations were compared to the standard Simpson’s biplane method.

For more information: www.baylabs.io


Related Content

News | Cardiac Imaging

Oct. 24, 2025 —YorLabs, Inc., a medical technology company developing next-generation intracardiac imaging solutions for ...

Time October 27, 2025
arrow
Feature | Breast Imaging

Despite decades of progress in breast imaging, one challenge continues to test even the most skilled radiologists ...

Time October 24, 2025
arrow
News | Contrast Media

Oct. 21, 2025 — Subtle Medical, Inc., a provider of AI-powered medical imaging solutions, has announced positive ...

Time October 21, 2025
arrow
News | Artificial Intelligence

Oct. 20, 2025 — Viz.ai has launched of Viz Assist, a suite of autonomous AI agents that significantly enhance how care ...

Time October 20, 2025
arrow
News | CT Angiography (CTA)

Oct. 9, 2025 — RapidAI recently announced that its Lumina 3D built on the Rapid Enterprise Platform has been named to ...

Time October 16, 2025
arrow
News | Point-of-Care Ultrasound (POCUS)

Oct. 15, 2025 — GE HealthCare has announced the latest advancement in its Venue family of point-of-care ultrasound ...

Time October 16, 2025
arrow
News | RSNA 2025

Oct. 7, 2025 — RSNA Ventures, a mission-aligned subsidiary of Radiological Society of North America (RSNA), has ...

Time October 08, 2025
arrow
News | RSNA 2025

Oct. 7, 2025 – Clairity Inc., a leader in AI-based breast cancer risk prediction, will make five scientific ...

Time October 07, 2025
arrow
News | Magnetic Resonance Imaging (MRI)

Oct. 6, 2025 — Hyperfine, Inc. has launched the Portable Ultra-Low-Field Scientific Exchange (PULSE), a subscription ...

Time October 06, 2025
arrow
News | Mammography

Sept. 26, 2025 — Data from two groundbreaking studies evaluating the performance of Hologic’s artificial intelligence ...

Time October 02, 2025
arrow
Subscribe Now