new study published on European Radiology evaluates the image quality of low iodine concentration, dual-energy CT (DECT) combined with a deep learning–based denoising technique with ClariCT.AI for pediatric abdominal CT, compared with that of standard iodine concentration single-energy polychromatic CT (SECT).

January 19, 2021 — Radiation exposure and side effects related to iodine contrast agents are the two main concerns of contrast enhanced computed tomography (CT) examinations. A new study published in European Radiology evaluates the image quality of low iodine concentration, dual-energy CT (DECT) combined with a deep learning–based denoising technique with ClariCT.AI for pediatric abdominal CT, compared with that of standard iodine concentration single-energy polychromatic CT (SECT). ClariCT.AI is an AI-based CT image denoising solution from ClariPi, Inc. The study reported that the use of a deep learning–based denoising technique was able to produce the same overall image and diagnostic quality of lesions despite a reduced iodine dose and decreased radiation dose. According to the study, the advantage of the low-concentration iodine use in conjunction with DECT and deep learning-based denoising was two-fold. The results show that the CT dose index and total iodine administration in DECT were respectively 19.6% and 14.3% lower than those in SECT.

The study method was done with DECT with 300 mg•I/mL contrast medium and was performed in 29 pediatric patients (17 boys, 12 girls; age, 2–19 years). The DECT images were reconstructed using a noise-optimized virtual mono-energetic reconstruction image (VMI) with a deep learning method. SECT images with 350 mg•I/mL contrast medium, performed within the last 3 months before the DECT, served as reference images. The quantitative and qualitative parameters were compared using paired t tests and Wilcoxon signed-rank tests, and the differences in radiation dose and total iodine administration were assessed.

The article concluded that ClariCT.AI deep learning-based noise-optimized VMI data using low iodine concentration (300 mg•I/mL) could maintain image quality while reducing radiation dose and iodine load. Therefore, this approach may be beneficial for pediatric abdominal CT scans.

For more information: www.claripi.com


Related Content

Feature | Breast Imaging

Despite decades of progress in breast imaging, one challenge continues to test even the most skilled radiologists ...

Time October 24, 2025
arrow
News | Endoscopes

Oct. 22, 2025 — Fujifilm Healthcare Americas Corp. has launched its advanced endoscopy platform, the ELUXEO 8000 ...

Time October 23, 2025
arrow
News | X-Ray

Oct. 22, 2025 — Imaging technology company Adaptix has begun live imaging trials as part of a research program at the ...

Time October 22, 2025
arrow
News | Contrast Media

Oct. 21, 2025 — Subtle Medical, Inc., a provider of AI-powered medical imaging solutions, has announced positive ...

Time October 21, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | Artificial Intelligence

Oct. 20, 2025 — Viz.ai has launched of Viz Assist, a suite of autonomous AI agents that significantly enhance how care ...

Time October 20, 2025
arrow
News | CT Angiography (CTA)

Oct. 9, 2025 — RapidAI recently announced that its Lumina 3D built on the Rapid Enterprise Platform has been named to ...

Time October 16, 2025
arrow
News | Point-of-Care Ultrasound (POCUS)

Oct. 15, 2025 — GE HealthCare has announced the latest advancement in its Venue family of point-of-care ultrasound ...

Time October 16, 2025
arrow
Sponsored Content | Videos | Radiology Business

Bayer Radiology’s Barbara Ruhland and Thom Kinst discuss how radiology departments can address the many different ...

Time October 09, 2025
arrow
News | RSNA 2025

Oct. 7, 2025 — RSNA Ventures, a mission-aligned subsidiary of Radiological Society of North America (RSNA), has ...

Time October 08, 2025
arrow
Subscribe Now