News | Artificial Intelligence | October 10, 2017

Compiled from scans of more than 30,000 patients, datasets are intended to help train artificial intelligence algorithms to aid radiologists in diagnosis

NIH Clinical Center Releases 100,000-Plus Chest X-ray Datasets to Scientific Community

October 10, 2017 — The National Institutes of Health (NIH) Clinical Center recently released over 100,000 anonymized chest X-ray images and their corresponding data to the scientific community. The release will allow researchers across the country and around the world to freely access the datasets and increase their ability to teach computers how to detect and diagnose disease. Ultimately, this artificial intelligence mechanism can lead to clinicians making better diagnostic decisions for patients. 

NIH compiled the dataset of scans from more than 30,000 patients, including many with advanced lung disease. Patients at the NIH Clinical Center, the nation’s largest hospital devoted entirely to clinical research, are partners in research and voluntarily enroll to participate in clinical trials. With patient privacy being paramount, the dataset was rigorously screened to remove all personally identifiable information before release.

Reading and diagnosing chest X-ray images may be a relatively simple task for radiologists but, in fact, it is a complex reasoning problem that often requires careful observation and knowledge of anatomical principles, physiology and pathology. Such factors increase the difficulty of developing a consistent and automated technique for reading chest X-ray images while simultaneously considering all common thoracic diseases.

By using this free dataset, the hope is that academic and research institutions across the country will be able to teach a computer to read and process extremely large amounts of scans, to confirm the results radiologists have found and potentially identify other findings that may have been overlooked.

In addition, this advanced computer technology may also be able to:

  • Help identify slow changes occurring over the course of multiple chest X-rays that might otherwise be overlooked;
  • Benefit patients in developing countries that do not have access to radiologists to read their chest X-rays; and 
  • Create a virtual radiology resident that can later be taught to read more complex images like computed tomography (CT) and magnetic resonance imaging (MRI) in the future.

The NIH research hospital anticipates adding a large dataset of CT scans to be made available as well in the coming months.

For more information: www.clinicalcenter.nih.gov

 

Related Content on Artificial Intelligence in Radiology

Artificial Intelligence Could Learn From the Medical Imaging Goldmine of the NHS Archives

VIDEO: Machine Learning and the Future of Radiology

How Artificial Intelligence Will Change Medical Imaging

Must Radiologists Be Prepared To Delegate ... To Smart Machines?


Related Content

Feature | Breast Imaging

Despite decades of progress in breast imaging, one challenge continues to test even the most skilled radiologists ...

Time October 24, 2025
arrow
News | Contrast Media

Oct. 21, 2025 — Subtle Medical, Inc., a provider of AI-powered medical imaging solutions, has announced positive ...

Time October 21, 2025
arrow
News | Artificial Intelligence

Oct. 20, 2025 — Viz.ai has launched of Viz Assist, a suite of autonomous AI agents that significantly enhance how care ...

Time October 20, 2025
arrow
News | CT Angiography (CTA)

Oct. 9, 2025 — RapidAI recently announced that its Lumina 3D built on the Rapid Enterprise Platform has been named to ...

Time October 16, 2025
arrow
News | Point-of-Care Ultrasound (POCUS)

Oct. 15, 2025 — GE HealthCare has announced the latest advancement in its Venue family of point-of-care ultrasound ...

Time October 16, 2025
arrow
News | RSNA 2025

Oct. 7, 2025 — RSNA Ventures, a mission-aligned subsidiary of Radiological Society of North America (RSNA), has ...

Time October 08, 2025
arrow
News | RSNA 2025

Oct. 7, 2025 – Clairity Inc., a leader in AI-based breast cancer risk prediction, will make five scientific ...

Time October 07, 2025
arrow
News | Magnetic Resonance Imaging (MRI)

Oct. 6, 2025 — Hyperfine, Inc. has launched the Portable Ultra-Low-Field Scientific Exchange (PULSE), a subscription ...

Time October 06, 2025
arrow
News | Proton Therapy

Sept. 28, 2025 — Leo Cancer Care has launched Grace, the company's upright photon therapy system. Grace is named after ...

Time October 03, 2025
arrow
News | Mammography

Sept. 26, 2025 — Data from two groundbreaking studies evaluating the performance of Hologic’s artificial intelligence ...

Time October 02, 2025
arrow
Subscribe Now