News | Women's Health | October 11, 2021

Terahertz imaging shows promise as an alternative method for determining if surgeons removed all cancerous tissue during and immediately following a lumpectomy 

Magda El-Shenawee, University of Arkansas breast cancer research

Magda El-Shenawee, University of Arkansas. Image courtesy of University of Arkansas


October 11, 2021 — Electrical engineering professor Magda El-Shenawee’s effort to develop a more accurate and less-invasive method for detecting breast cancer will benefit from a $424,545 grant from the National Institutes of Health.

El-Shenawee works with pulsed, terahertz imaging, a type of electromagnetic radiation technology that produces high-quality images of biological tissue down to roughly 80 micrometers. The method scatters fewer waves than radiography, which enables deeper imaging into the tissue.

Terahertz imaging shows great promise as an alternative method for helping clinicians determine whether all cancerous tissue was removed during and immediately following a lumpectomy.

Standard breast cancer imaging techniques, such as radiography and computed tomography, or CT scan, do not always provide a clear assessment of breast tissue on the margins of a tumor. This is especially important during a lumpectomy, which is the removal of cancerous breast tissue while trying to preserve healthy tissue surrounding it. Without an accurate picture of the margins between the tumor and healthy tissue, surgeons cannot be sure they removed all cancerous tissue.

This problem leads to a high rate — greater than 30 percent — of additional surgery. The need for an immediate imaging technology is especially critical at small hospitals and outpatient clinics that do not have access to an on-site pathology laboratory that could provide immediate results.

“Our pre-clinical models showed strong differentiation between cancerous and fatty tissues,” El-Shenawee said, “but the more clinically relevant differentiation between cancerous and healthy, non-fatty tissue remains challenging. To build upon the successes of our previous work and improve the sensitivity of terahertz imaging to detect cancer at the surgical margins, we have identified areas where we can make significant improvements.”

El-Shenawee’s research team, including Narasimhan Rajaram, associate professor of biomedical engineering, and Jingxian Wu, professor of electrical engineering, in addition to graduate students, will re-design instrumentation to develop more sensitive wave polarization. In this new approach, all four polarizations of waves will be incorporated to increase the spatial and spectral information about different types of tumor tissues.

The researchers will test the system on animal models with breast cancer and try to improve the accuracy of detection algorithms by combining spatial information embedded in the images with spatial statistics.

“We anticipate that the new approach will increase the image contrast between cancerous and healthy adjacent tissues, leading to better differentiation and classification of cancer on the tumor margins,” El-Shenawee said. “The success of this approach should allow us to expand our work and move toward clinical trials.”

For more information: www.uark.edu


Related Content

Feature | Breast Imaging

Despite decades of progress in breast imaging, one challenge continues to test even the most skilled radiologists ...

Time October 24, 2025
arrow
News | Breast Imaging

Oct. 15, 2025 — Leading into Breast Cancer Awareness Month, Fujifilm Healthcare Americas Corp. and Beekley Medical ...

Time October 15, 2025
arrow
News | RSNA 2025

Oct. 7, 2025 – Clairity Inc., a leader in AI-based breast cancer risk prediction, will make five scientific ...

Time October 07, 2025
arrow
News | Breast Imaging

Oct. 3, 2025 — Gnosis for Her, a mobile breast health initiative redefining comfort and access in women's breast imaging ...

Time October 06, 2025
arrow
News | Mammography | Mayo Clinic

Early detection is key to breast cancer survival. But nearly half of all women in the U.S. have dense breast tissue ...

Time October 03, 2025
arrow
News | Mammography

Sept. 26, 2025 — Data from two groundbreaking studies evaluating the performance of Hologic’s artificial intelligence ...

Time October 02, 2025
arrow
News | PACS

Sept. 25, 2025 — RamSoft Inc., a provider of cloud-based RIS/PACS radiology solutions, has announced a new ...

Time September 26, 2025
arrow
News | Radiopharmaceuticals and Tracers

Sept. 20, 2025 — A promising new PET tracer can visualize a protein that is commonly overexpressed in triple-negative ...

Time September 18, 2025
arrow
News | Women's Health

Sept. 15, 2025 — GE HealthCare has launched the Voluson Performance series, the latest addition to its women’s health ...

Time September 15, 2025
arrow
News | Mammography

Sept. 3, 2025 — According to ARRS’ American Journal of Roentgenology (AJR), a commercial artificial intelligence (AI) ...

Time September 09, 2025
arrow
Subscribe Now