spectral CT

Tyler Curtis, a graduate student, captures images from the spectral CT Graduate student Tyler Curtis captures images from the spectral CT.


Taken by Wilhelm Roentgen in 1895, the first X-ray produced was of his wife’s hand. Roentgen received the first Nobel Prize in physics for his work, but his discovery of X-ray beams also changed the medical profession far more than that simple black-and-white image might have suggested. The beams he used, higher in frequency than ultraviolet light but lower in frequency than gamma rays, revolutionized the medical profession, allowing physicians to see inside a patient’s body to more readily diagnose disease and injury.

In short, Roentgen laid the foundation for diagnostic radiology. Within six months of his discovery, surgeons on the battlefield were using X-rays to locate bullets in wounded soldiers. Since that time they have continued to be used — for non-invasive imaging in biomedicine, non-destructive testing of materials, security screening and more. As the technology has advanced, so has the clarity and accuracy of the X-rays.

Today radiographic images, such as X-rays, mammograms and computed tomography (CT), help detect diseases like cancer in its early stages when treatment can be most effective. However, it has all been in black and white. Even accounting for the remarkable advances in radiography and 3-D imaging since Roentgen, the difference between healthy tissue and abnormalities can be difficult to detect when an image is in shades of gray. Unfortunately, it can still be the difference between life and death.

A new technology called spectral (color) computed tomography, or spectral CT, is not only on the horizon, but it is also on the University of Notre Dame’s campus, where researchers are giving the phrase “in living color” a new meaning.

According to project leaders Ryan K. Roeder, associate professor of aerospace and mechanical engineering, and Tracy C. Vargo-Gogola, senior lecturer in biochemistry and molecular biology with Indiana University School of Medicine at South Bend and the Harper Cancer Research Institute, the spectral CT they are using — part of a collaboration between Notre Dame and MARS Bioimaging Ltd. — is the first commercially available preclinical system in the United States. Housed in the Notre Dame Integrated Imaging Facility (NDIIF), the MBI preclinical spectral CT scanner can detect up to eight X-ray energy channels simultaneously, allowing color assignment to specific molecular signatures for improved identification of abnormalities, such as tumors.

“The technology promises a transformation for biomedical imaging in general and cancer imaging in particular,” said Bradley Smith, the Emil T. Hofman Professor of Chemistry and Biochemistry and director of the NDIIF.

While the scanner uses advanced X-ray detector technology made possible by the Medipix3 detector chip developed at the CERN, it is aided by nanoparticle contrast agents that Roeder’s lab has created to “target” molecular signatures associated with cancer and other diseases. Individual contrast agents and tissue types can be identified and assigned a specific color, resulting in a more complete picture than ever realized.

Roeder, Vargo-Gogola and their team are presently investigating spectral CT contrast agents for molecular imaging with support from the National Science Foundation. Their research is also being incorporated into a variety of educational programs for students engaging in STEM disciplines through NDnano and the Harper Cancer Research Institute.

In addition, the researchers are forming a close collaboration with the Kelly Cares Foundation and the Saint Joseph Health System to develop more accurate breast cancer detection methods using molecular imaging for women with dense breast tissue using various molecular imaging approaches, including spectral CT. While these efforts focus on breast cancer, work with this new molecular X-ray scanner is promising for the detection and treatment of many types of cancers, including ovarian, colorectal, lung and metastatic disease.

“Spectral computed tomography (CT) scanning is really the next great enhancement of clinical CT quality,” David P. Hofstra, administrative director of the Diagnostic Imaging and Therapy Division at Saint Joseph Health System in Mishawaka, said. “It takes us beyond comparing the number of ‘slices’ to a discussion about fundamentally better and more clinically valuable imaging.

“Already, spectral CT scanning is playing important roles in clinical practice by reducing metal artifacts and also by reducing the amount of radiation that is administered to patients.

“In the very near future, spectral CT promises to allow clinicians better means to characterize the material makeup of visualized items (like kidney stones, plaques, uric acid crystals, etc.). Also in the near future, iodinated contrast that is administered may be able to be reduced.

“Someday, spectral CT technology may allow altogether different types of contrast materials other than iodine, which we use currently. Different or targeted contrast agents may show important clinical findings that we can only begin to imagine currently.”

For more information: http://news.nd.edu/


Related Content

News | PET-CT

June 19, 2025 — Building on a collaboration that spans more than three decades, GE HealthCare has renewed its research ...

Time June 19, 2025
arrow
News | Imaging Software Development

June 12, 2025 — GE HealthCare has announced the combination of GE HealthCare’s proprietary features and algorithms with ...

Time June 12, 2025
arrow
News | Computed Tomography (CT)

April 17, 2025 — Nano-X Imaging LTD has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for ...

Time April 18, 2025
arrow
News | Lung Imaging

April, 15, 2025 — Optellum has entered an agreement with Bristol Myers Squibb to leverage AI in early diagnosis and ...

Time April 17, 2025
arrow
News | PACS

April 3, 2025 – Konica Minolta Healthcare Americas, Inc. has launched the next-generation of the Exa Platform with the ...

Time April 15, 2025
arrow
News | Pediatric Imaging

April 10, 2025 — Cincinnati Children’s and GE HealthCare will form a strategic research program focused on driving ...

Time April 10, 2025
arrow
News | SPECT Imaging

Feb. 5, 2025 — Serac Healthcare Ltd., a clinical radiopharmaceutical company developing an innovative molecular imaging ...

Time February 05, 2025
arrow
News | Computed Tomography (CT)

Dec. 3, 2024 — During RSNA '24, GE HealthCare announced the 510(k) submission to the U.S. Food and Drug Administration ...

Time December 18, 2024
arrow
News | SPECT Imaging

Dec. 2, 2024 — GE HealthCare has agreed to acquire full ownership of Nihon Medi-Physics Co., Ltd (NMP), by purchasing ...

Time December 05, 2024
arrow
News | Enterprise Imaging

Nov. 13, 2024 – Konica Minolta Healthcare Americas, Inc.has launched Exa Enterprise, an enterprise imaging solution with ...

Time November 14, 2024
arrow
Subscribe Now