October 6, 2009 - At the University of Virginia Health System where they opened a new Magnetic Resonance Guided Focused Ultrasound Surgery Center, specialists are using magnetic resonance guided focused ultrasound (MRgFUS) to perform research that will represent a wide range of disciplines, including anesthesiology, biomedical engineering, gynecology, neurology, neurosurgery, oncology, radiology, radiation oncology surgery and urology.

Within coming months, research will focus on using MRgFUS to treat brain, breast, prostate, bone and liver tumors and conditions such as epilepsy, stroke, chronic pain, Parkinson's disease and essential tremor.

Neal F. Kassell, M.D., a professor of neurosurgery at the University of Virginia's School of Medicine believes that MRgFUS may be the most important therapeutic development since the scalpel.

During MRgFUS treatments, which are noninvasive and performed on an outpatient basis, patients lie on a table while doctors use the visual capabilities of magnetic resonance imaging to direct hundreds of individual and normally harmless sound waves at a single treatment point deep inside the body.

When ultrasound waves intersect the intense energy destroys tumor cells, and according to Alan H. Matsumoto, M.D. and chairman of UVA’s Department of Radiology and co-director of the new center, the technology is so precise that it can treat sites as small as a millimeter.

Treatments, which will become available in late October, will take about three hours. Side effects, if any, are typically minimal - minor cramping is most common - and patients can expect to feel well enough to resume daily activities almost immediately.

James M. Larner, M.D., director of UVA's Focused Ultrasound Center and chairman of the Department of Radiation Oncology, notes that focused ultrasound has the ability to destroy 100 percent of cancer cells, unlike chemotherapy, which kills only a certain percentage of malignant cells. Also, cancer cells cannot become resistant to focused ultrasound in contrast to chemotherapy. In addition, focused ultrasound has a rapid dosing drop off, meaning the technology concentrates high levels of heat on a target site but does not spill over to nearby healthy tissue, potentially causing damage or patient complications.

For more information: www.virginia.edu


Related Content

News | Point-of-Care Ultrasound (POCUS)

June 17, 2025 — Royal Philips has announced the global launch of the Flash Ultrasound System 5100 POC — a new point-of ...

Time June 19, 2025
arrow
News | Lung Imaging

June 18, 2025 — Exo recently announced that now included on its Exo Iris is the first ever FDA 510(k) cleared AI for ...

Time June 18, 2025
arrow
News | Radiation Therapy

May 14, 2025 — Siemens Healthineers is investing $150 million in new projects to expand production, create jobs and ...

Time May 15, 2025
arrow
News | Mammography

April 29, 2025 — iCAD, a global provider of clinically proven AI-powered cancer detection solutions, has announced a ...

Time April 29, 2025
arrow
News | Mammography

April 24, 2025 — GE HealthCare will feature its latest advancements in diagnostic accuracy and patient-centered breast ...

Time April 24, 2025
arrow
News | Artificial Intelligence

April 16, 2025 — An artificial intelligence (AI) program trained to review images from a common medical test can detect ...

Time April 16, 2025
arrow
News | Ultrasound Women's Health

April 11, 2025 — Contrast-enhanced ultrasound (CEUS) is a safe and accurate diagnostic imaging option for pregnant women ...

Time April 11, 2025
arrow
News | Pediatric Imaging

April 10, 2025 — Cincinnati Children’s and GE HealthCare will form a strategic research program focused on driving ...

Time April 10, 2025
arrow
News | Focused Ultrasound Therapy

March 31, 2025 — Neuropathic pain affects up to 10 percent of the global population and can be challenging to manage ...

Time April 02, 2025
arrow
News | Breast Imaging

March 20, 2025 — GE HealthCare has launched Invenia Automated Breast Ultrasound (ABUS) Premium, the latest 3D ultrasound ...

Time March 21, 2025
arrow
Subscribe Now